Bisets as Categories and Tensor Product of Induced Bimodules

نویسنده

  • Serge Bouc
چکیده

Bisets can be considered as categories. This note uses this point of view to give a simple proof of a Mackey-like formula expressing the tensor product of two induced bimodules. AMS subject classification (2000) : 16D20, 20C20.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantized reduction as a tensor product

Symplectic reduction is reinterpreted as the composition of arrows in the category of integrable Poisson manifolds, whose arrows are isomorphism classes of dual pairs, with symplectic groupoids as units. Morita equivalence of Poisson manifolds amounts to isomorphism of objects in this category. This description paves the way for the quantization of the classical reduction procedure, which is ba...

متن کامل

On Tensor Products of Operator Modules

The injective tensor product of normal representable bimodules over von Neumann algebras is shown to be normal. The usual Banach module projective tensor product of central representable bimodules over an Abelian C∗-algebra is shown to be representable. A normal version of the projective tensor product is introduced for central normal bimodules.

متن کامل

Fuzzy projective modules and tensor products in fuzzy module categories

Let $R$ be a commutative ring. We write $mbox{Hom}(mu_A, nu_B)$ for the set of all fuzzy $R$-morphisms from $mu_A$ to $nu_B$, where $mu_A$ and $nu_B$ are two fuzzy $R$-modules. We make$mbox{Hom}(mu_A, nu_B)$ into fuzzy $R$-module by redefining a function $alpha:mbox{Hom}(mu_A, nu_B)longrightarrow [0,1]$. We study the properties of the functor $mbox{Hom}(mu_A,-):FRmbox{-Mod}rightarrow FRmbox{-Mo...

متن کامل

Functoriality and Morita Equivalence of C * -algebras and Poisson Manifolds Associated to Lie Groupoids

It is well known that a Lie groupoid G canonically defines both a C *-algebra C * (G) and a Poisson manifold A * (G). We show that the maps G → C * (G) and G → A * (G) are functorial with respect to suitably defined categories. The arrows (Hom-spaces) between Lie groupoids are taken to be isomorphism classes of regular bibundles (Hilsum–Skandalis maps), composed by a canonical bibundle tensor p...

متن کامل

The Boardman-Vogt tensor product of operadic bimodules

We define and study a lift of the Boardman-Vogt tensor product of operads to bimodules over operads. Introduction Let Op denote the category of symmetric operads in the monoidal category S of simplicial sets. The Boardman-Vogt tensor product [3] −⊗− : Op× Op→ Op, which endows the category Op with a symmetric monoidal structure, codifies interchanging algebraic structures. For all P,Q ∈ Op, a (P...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Categorical Structures

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2010